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Relativistic particle dynamics and basic physical quantities for the general theory 
of gravity are reconstructed from a quantum space-time point of view. An 
additional force caused by quantum space-time appears in the equation of 
particle motion, giving rise to a reformulation of the equivalence principle up 

2 to values of  O(L ), where L is the fundamental length. It turns out that quantum 
space-time leads to quantization of  gravity, i.e., the metric tensor g,~(f)  becomes 
operator-valued and is not commutative at different points x ~ and y~' in usual 
space-time on a large scale, and its commutator depending on the "vielbein" 
field (gaugelike graviton field) is proportional to L 2 multiplied by a translation- 
invariant wave function propagated between points x ~ and y~'. In the given 
scheme, there appears to be an antigravitational effect in the motion of  a particle 
in the gravitational force. This effect depends on the value of particle mass; 
when a particle is heavy its free-fall time is long compared to that for a light-weight 
particle. The problem of the change of time scale and the anisotropy of  inertia 
are discussed. From experimental data from testing of  the latter effect it follows 
that L ~  < 10 -22 cm. 

1. I N T R O D U C T I O N  

One of the important unsolved problems of quantum field theory is 
the quantization of gravity. Recently, this has become more pressing in light 
of the development of unified ways of describing the fundamental forces 
in Nature. Although the force of gravity is extremely weak with respect to 
electromagnetic and weak (or electroweak) and strong forces between 
elementary particles, it is still nonzero, so that as increasing energies probe 
deeper and deeper into matter, a level eventually should be reached where 
quantum gravitational effects show up. This is the so-called "Planck mass" 
of about 1019 GeV. 
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Many attempts have been made to construct the quantization of gravity 
from different points of view (see, for example, Markov et al., 1985; Sato 
and Inami, 1986), among which the ideology of supersymmetry and super- 
string theory is the most attractive and gives rise to the hope that a quantum 
picture of gravity can be described by analogy with other field interactions. 
Contrary to the usual approach, within the framework of the latter, forces 
are not interpreted as the interaction of pointlike particles, but are regarded 
as infinitely small, creeping and zigzag-like one-dimensional strings. Accord- 
ing to E. Witten, this method may lead to a new understanding of the 
space-time structure of the general theory of gravity. 

In a series of papers we want to consider the problem of the quantization 
of gravity within quantum space-time with coordinates z~: 

z ~ = x ~ + L I I U ( x )  (1) 

where the II~(x) are arbitrary noncommutative matrix functions of the 
points x ". One possible interpretation of quantum space-time with (1) can 
presumably be found by taking x ~ as usual coordinates and interpreting 
II ~ (x) as additional (non-Abelian-like) fields. Such a type of space (1) with 
some applications has been discussed in earlier work (Namsrai, 1985; 
Dineykhan and Namsrai, 1985a). The present paper has an introductory 
character, giving mathematical methods, defining basic quantities of the 
theory, and formulating its principles. We also consider some physical 
consequences of the results. 

The choice of coordinate form (1) for quantum space-time is based 
on the following argument: from high-energy physics and other physical 
considerations, especially from astrophysical data (see below), it is welt 
known that the parameter L of the theory (which characterizes the domain 
within which the quantum space-t ime structure or quantum gravitational 
effect may be manifested) is a very small value of the order of L ~  < 
1 0 - 1 6 - 1 0  - t 7  c m  or even L ~  < 10 -2~ cm (see also Bracci et al., 1983). Therefore, 
in practical applications of the theory, the quantum picture of space-time 
and gravity may be considered as a small background perturbation effect 
(background radiation field) over the entire continuous space-time, or in 
other words, contributions to observable effects or any physical processes 
due to the expected quantum structure of space-time are indeed very small. 
This tells us that if the quantum nature of space-time exists in Nature, its 
structure should be negligibly small at presently attainable energies. But 
when energy is increased, expected structural effects become more and more 
sensible. Thus, we suggest that space-time with quantized coordinates is 
slightly different from classical continuous space-time, i.e., its coordinates 
may be formed by means of formula (1). In this view, the continuum theory 
is considered to be an approximation up to (at least) the order of O(L2). 
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Therefore, our aim is to calculate corrections to the continuum theory when 
the parameter L is small but nonzero. 

In our model, yet one more question arises: how to construct a con- 
tinuum theory with fundamental length by using a quantum one. It is a 
common problem for all schemes devoted to the construction of quantum 
gravitational theory. This problem is connected directly with the procedure 
of passage from quantum space-time in the microworld to nonquantized 
space-time on a large scale. This procedure requires some mathematical 
methods depending on the concrete realization of the introduction of 
quantum space-time into physics. We realize this program by two steps: 
first, we introduce quantum space-time with coordinates (1) as a transforma- 
tion of one (usual) coordinate system to another (quantum) and vice versa, 
and construct physical quantities under this "quantum" transformation law. 
As a result, the physical theory of space-time depending on noncommuting 
variables becomes a quantum one involving the parameter L inexplicitly. 
Second, according to the assumption that the value of L is very small and 
that all observable physical processes may be understood as averaged values 
over the background of quantum space-time, one can obtain physical 
quantities in it by means of  expansion over the parameter L, keeping terms 
up to the order of O(L2), in which we carry out some averaging procedure, 
which reduces to taking the trace of II ~ matrices or making use of  the 
expectation value over background (or base-vacuum like) states in quantum 
space-time. In this way, physical quantities in quantum space-time are 
constructed by using the correspondence principle, according to which the 
usual theory is obtained in the limit L-~ 0. 

In this way we have succeeded in defining the dynamics of relativistic 
particles and in extending the given method to the theory of gravity in 
quantum space-time. Thus, we observe that if space-time has quantum 
nature at small distances, then an additional force caused by this structure 
inevitably appears in the particle dynamics. This allows us to reformulate 
the equivalence principle in the general theory of relativity to an accuracy 
with terms of  the order of  O(L2). This means that the basic principles of 
the theory are slightly violated at very small distances, and that anisotropy 
of inertia takes place everywhere and is proportional to L 2 terms, i.e., in 
quantum space-time it leads to another law of particle motion with respect 
to that in inertial systems of reference. This new dynamical law gives rise 
to the appearance of an antigravitational effect in the motion of a particle 
in the gravitational force. In this sense, quantum space-time may be regarded 
as a source of a fifth force in Nature, the occurrence of which is more 
sensible in the microworld. Moreover, our method turns out to be useful 
in the quantization of gravity. As a first step, we define here the metric 
tensor g~(z) and its commutator. Further, by the affine connection method 
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we find the equation of particle motion in presence of gravity and show a 
connection between F~,~ and g ~  in the quantum space-time case. We also 
consider some physical consequences of the theory in order to estimate the 
value of the fundamental length. 

In Section 2, we introduce quantum space-time into the theory for the 
Minkowski space-time case and define proper time by means of which 
four-velocity and -force are calculated. Here the nonrelativistic limit is also 
considered (for details, see Dineykhan and Namsrai, 1985b). An additional 
force is determined by using the action principle. A nonrelativistic quantum 
mechanical formalism is also discussed in order to estimate the change of 
energy levels of hydrogenlike atoms in quantum space due to an additional 
force. Section 3 deals with the formulation of the equivalence principle in 
quantum space-time and also with the quantization problem of gravity. 
Here primary attention is paid to the mathematical definition of the theory 
within the transformation method of coordinate systems. By using a tetrad 
formalism, we calculate explicitly the commutator of the metric tensor at 
different points of usual space-time on a large scale. The motion equation 
of the particle in the gravitational force is investigated and the affine 
connection method for quantum gravity is defined. Section 4 is devoted to 
the study of concrete applications of the formalism. Here we discuss the 
change of time scale and the anisotropy of inertia due to the quantum 
nature of space-time and explain the antigravitational effect on particle 
motion in an external gravitational force. 

2. RELATIVISTIC PARTICLE DYNAMICS IN QUANTUM 
SPACE-TIME 

2.1. Proper Time Formalism in Quantum Space-Time 

Basic dynamical quantities, such as velocity, acceleration, and force, 
should first be defined by the correspondence principle. For example, by 
definition the velocity of a particle in quantum space-time is given by 

U ~ = d z ' V d s  q (2) 

where the variables z ~* are defined by (1). The symbol dsq in (2) is to 
be understood as follows. First of all, we notice that the definition of the 
proper time variable d r  = d s / c  in the quantum space-time case should be 
generalized, where d s  2 -~ d x  2 -  d x  2 = c 2 d l  2 - d x  2 is the interval between two 
events situated infinitesimally near each other. Thus, 

drq = dsq /  C = (1/  c)(  dz2) 1/2 (3) 
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where 

dz 2 = ~v  dz ~ dz ~ = dz ~ dz" 

-1  p = p ~ =  1,2,3 

~ = 1, v =/z  = 0 

0, z ' r  

is the Minkowski metric. Sometimes (for example,  in this section) we 
explicitly retain the velocity of  light c in formulas. But in any case, we use, 
as usual, the system of units in which c = 1. We now calculate proper  time 
given by formula (3) in quantum space-time. In accordance with (1), we have 

dzq=l [ rl~( dx" + LOII~'dx~ dxV p L Ox aOII~dxa) ]l/2 

[dx ~ dx u 2L 0II u , L 2 ii/x 2 1/2 
c c dx~ +=(Oll"dxP~ ] 

- + c--- f Ox o dx c~ \Oxp ] j 

or its ratio with respect to the time interval dt in the system of reference 
where a clock is rest is given by 

L2(OII~ \2-] - , / :  

=/3+a (4) 

where 

3ii~ + L2(OH~ 2 3 s 2 OH~ 2 
__!/~ 3 [ 2 L 0  ~ -  VPV ~ 

v'={l,v/c}, ~=(v"v")-l/2=(l-v2/c2)-l/2 

v is the usual velocity of  the particle. Thus, we see that in quantum 
space-t ime,  proper  time depends on the fundamental  length, is complicated, 
and has operator-valued structure. Therefore, in order to obtain its value 
over the large scale of space- t ime some mathematical  procedure of  averaging 
should be carried out. This procedure is reduced to taking the trace when 
matrix functions I I " (x )  are given by the tetrad formalism: I I~(x)  = y~e2(x) 
(a = 0, 1, 2, 3), where ,/~ and e2(x) are Dirac matrices and "vielbein" or 
tetrad fields, respectively. Here the question arises of  how to choose the 
metric form in internal tetrad space-t ime. There are two possibilities: either 
Pauli 's or Feynman's  metric forms can be used. The cases differ when we 
take the trace of  "y~ matrices. For the former and the latter case, we have 

Sp(yay b) = 46ab, Sp(yay b) = 4 ~ b  
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respectively. In this paper, we consider both cases separately, giving com- 
pletely different results. From the physical application point of view, both 
cases are very interesting. Thus, for the second case, after taking a trace, 
we get 

1 L2/~ 3 i2) A'rq = (d'rq) = l  Sp( drq) ~ dt ( ~ - l  +L~2 [311--~ 

where 

I 1 = rlab~x p V ~, 12 = VeV  ~" v Ox ~ \axe  / \ a x e  7q~b 

For simplicity, we consider two-dimensional space-time and a simple wave- 
like form for e~(x), 

e e ~ = ( s i n ( w t - k x )  c o s ( w t - k x ) ~  

e~ el] k - c o s ( o o t - k x )  s i n ( o ) t - k x ) ]  (5) 

Then, it is easily verified that 

11 = 2 cos 2(o~/- kx)(w - kt~)2c  -2  
(6) 

6 = �89 11 -2vc-3(w - kv) 2 sin 2(wt - kx) 

As a result, in quantum space-time the proper time of the particle oscillates 

Arq=dt  1 - - ~ )  + -~  1 - ~  c o s 2 ( o J t - k x ) ( w - k v )  2 

L 2 ( o ) - k v )  2 [ c o s 2 ( w t _ k x ) _ 2 V _ s i n 2 ( w t _ k x ) ] ]  (7) 
2C 2 [ (1  -- tj2/C2)3] 1/2 C [ JI 

From this formula, an important physical consequence follows; i.e., that 

A% = 0 o r  (dsq) = 0 ( 8 )  

for the photon, for which w - k v ~ t o  - k c  = 0 (v =pe2/e = kcZ/to = c). This 
means that the velocity of light does not change and its invariant character 
is still valid in quantum space-time. 

2.2. Four-Momentum of a Particle in Quantum Space-Time 

By definition, in quantum space-time the four-momentum P~ is 
given by 

dz ~ dz ~ 
P"  = m c - - =  m 

dsq d'rq 
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Taking into account expressions (1) and (4), we have 

OHi Vp( fl _ 30II~ P' = mvi(fi + 8) + reeL Ox p Lfl ~x o V~ ~) 

oil~ V~ fi - Lfi 3 -  Vov ~ pO = mc(fl + 6) + mcL Ox p Ox o 

The square of these quantities takes the form 
" 2 

+ m2cZL 2 20II' (pi)2=m2(vi)2fl2(l+~) fl (Ox p Vp) 

-3cm2L2fi4(vJOIV\ Ox o V") 

X\~Xp VPV~)-m2r 0 

+ 2cm2Lfl 2 vJO~./ (ovo) 
L2c2m 2 2 OH~ 2 (P~ q- 1~ (OxP V~ ) 

-~2j~2c2Lt82~p~ VP-3m2c2L2fi4~'~Oox Vp{OII"\~x a VaV") 

2 2--2~4{ OI~tx p ,u- ~ //OI~O 
- m  c L ,, l ~  v v ) [ ~  vo) 

o r  

where 

( pO)2 = ( pi)2 + m2c2(1 + x)+ m2 L2 c2 ~2( Oxp V~ ~x aOII" Va ) 

-4m2c2LZfi4( v~ OII~x o V ~ a VaV ~) 

+ 2m2c2L~S2( ,'Or[ ~ v ~xOW) 

( )2 )2 
x = -2Lf12 0II~ VPV~ - L2~ 2 0II~ V ~ + 4L2f14( OII~ VPV ~ 

ox--; ~x ~ \ ox p 

It is important to notice that in quantum space-time the relation 

(pO)2 = (pi)2+ rn2c 2 (pO = e/c) 

1041 

(9) 

(lo) 
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between the energy and momentum of the particle is valid for any II~(x), 
i.e., it is independent of the concrete form of the function II"(x) .  

For the function (5) averaged values of ((P~ 2) and ((px)2) take the form 

((px)2) = m2v2132 (1 - LZf12I, + 4 L 2 f 1 4 1 2 )  - lm2c2L2~2I ,  

- 4m2cL2~4(v /c2 ) ( to  - kv)  2 sin 2(wt  - k x )  

((p0)2} = m2c2f12(1 _ L2/3211 + 4L2~412 ) +�89 c2L2~2I, 
- 2m2c2L2f14Ii + 4m2e2L2f14(v /e  3) (w - kv)  2 sin 2(wt  - kx )  

where 11 a nd /2  are expressed by (6). From these expressions, it is easy to 
verify that 

((pO)2) = ( ( p~)2) + m2 c 2 

as one would expect. But this relation holds by formula (10) without taking 
the trace of 3' matrices. 

It is clear that in accordance with formula (10), the components of  the 
four-velocity depend on each other: 

U ~ U  ~ = 1, U ~ = P " / m c  (11) 

At the same time, we notice that this equality follows immediately from 
/a. v definition (2) and the formula ds2q = % ~  dz dz  . Geometrically, one can see 

that in quantum space-time U" is also a unit vector. By analogy with the 
definition of  the four-velocity, we call the second derivative 

d2z ~ d U  ~ 

ds2q dsq 

the four-acceleration. Differentiating relation (11), we find U ~ d U " / d s q  = O, 

i.e., in quantum space-time, four-vectors of velocity and acceleration are 
"mutually perpendicular." 

Finally, we consider the case of the Pauli metric for the tetrad formalism, 
for which ~qab~ ~b in the above formulas should be changed. Thus, the 
expressions for A%, ((px)2), and ((p0)2) take the form 

Arq = dt 1 - ~  2c 2 [(1 - v~----/c~)~]~/2J 
((px)2) = m2 v2f12( l + 4L2f14i)_t_ m2L2c2~2 i  

((pO)2) = mZc2/32(1 + 4L2/34I) + m2L2c2~2 i  _ 4 m Z c 2 L ~ 4 i  

where I = (to - kv)2c -2. The essential difference between these formulas and 
those obtained above is that here oscillating terms are absent. 

2.3. Appearance of an Additional Force Due to Quantum Space-Time 

Generally speaking, since the concept of force has physical meaning 
only at the classical physical level, before defining four-force in quantum 
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space-time, we first consider its nonrelativistic limit. To define force in 
quantum space-time, we proceed as follows. Consider (pi)2 and obtain its 
nonrelativistic value, that is, 

(e,)2= m2( T_ + m2L (o +o. 
\ 8t 8x j 

where the term proportional to the single matrix YF(x) (i.e., term of the 
order of L) is omitted, which, of course, vanishes after taking the trace. 
Further, according to the correspondence principle, with this quantity one 
can construct the Lagrangian function of the free particle in quantum 
space-time, 

~ ( x ' , 2 ' , t ) -  (pi)22~_ - ~m(v'12+mL2(Oll'+oll'2 \-77 7XTX j vj)2 02) 

With this Lagrangian function, as usual one can reformulate the action 
principle and obtain the Euler-Lagrange equation 

d 8 ~  0 ~  
- - = 0 ,  n = 1 , 2 , 3  

dt 8 2 "  Ox" 

The latter gives an equation of motion for the free particle in space-time 
over the large scale: 

n mY" = Fq, n = 1, 2, 3 (13a) 

where 

m L  2 {0211 i Or] i O[I i 02II i 0II i O2H / OH / 0II i /5k 
F ~ = - - ~ - \  St--S 8x----g+ - -  ~ - -  vk_~ - -  Ox ~ Ot 2 Ox ~ 8 t a x  k Ox" cgx k 

- o  o . o i l  ~ 8 [ I  ~ _ v~ _ _  v _ i _ _  

+ O x  ~ O-----~t Vaox----g+Ox ~ 1)j Ox" Ot Ox j Ox n Ox ~ Ox" Ot 

02I~ i ol~i jl)k_(~I~l 02II i ) 
- 8x  j Ox" Ox k v Ox J Ox k Ox" v jvk  (13b) 

After taking the trace, this force is reduced to the following averaged value 
(for Feynman's metric in the tetrad formalism): 

,~t2. " Oei~ 8 ae~b vg Oe'~ 8eib .k [02e i Oe'b + + ~ - -  v 
( F ~ ) = - r n L 2 ~ a b  �9 Ox" Ox" Ot Ox k Ox" Ox k 

Oe'~ O2e~b Vj Oe'~ O2e~b ) 
Ot Ox j c?x n Ox k OX n OX j ujl")k 

In two-dimensional space-time, when eio(x) is given by (5) {here it should 
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be assumed that x depends on time variable t, i.e., for example, cos(o)t- 
kx) =-cos[mr- kx(t)]}, this averaged force takes the form 

(Fq) = m L 2 [ ( k w  2 - 2k2o9)c) sin 26 + 2k2Jr c o s  26], 6 = wt - kx 

and (14a) 

(Fq) = -2mL2k22 (14b) 

for the Feynman and Pauli metrics, respectively. 
Thus, we see that due to quantum space-time at small distances, in 

our model free particle motion is changed and an additional force appears. 
This force, depending on the velocity and acceleration of the particle, either 
oscillates or has a friction force character in accordance with the choice of 
the Feynman or the Pauli metric for tetrad space-time, respectively. In the 
oscillating force case, it seems that particle motion, whether slowed down 
or accelerated, moves periodically by means of chain steps. In contrast, in 
the friction force case [second term in (14)], the particle undergoes a purely 
slowing-down motion. 

In Section 4, we will study the motion of a particle given by an equation 
of the type of (13). Now we consider the case when the matrix function 
IIi(x), i = 1, 2, 3, does not depend on the time variable explicitly. For this 
stationary case, the Lagrangian (12) has the following structure: 

m  i)2 mL2 (On' 
~(x ' ,  2 i) 2 2 \Ox J vJ (15a) 

and therefore the force Fq in equation (13) is given by 

mL2 ( o I I i  O2y I  i . 0 2 I I  i . o l ~  i 

F~ - 2 \Ox ---z Ox j Ox ~ vJvm +--ax J Ox m vJvm--Ox" 

Ol-i~ OII~ t~J+ OII~ OII~ 15 J) (15b) 
+ Ox----- z Ox-- 5 Ox j Ox---2 

o r  

/ a2e i . aei~ ) ae~ 
(F~) = -mL2rlablax~axma v jr,,, +ax j -  t3Jz ax" 

Here, we use another representation for the ei~ field, and choose the 
spherical frame of reference as the tetrad coordinate system and the Car- 
tesian one for the world coordinate system (Dineykhan and Namsrai, 1985a). 
Then 

/ x / r  y / r  z / r  

eia(x) = \-Y/P[zx/rp zy/rPx/p -PO/r), (16) 

where r =  (X2+y2+22) 1/2 and p = (x2+y2) 1/2. TO define the motion of the 
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particle it is assumed that the variables x, y, z and therefore r and p depend 
on the~time variable t. With (16), the Lagrangian (15a) has the form 

- rn(v~)2 ~- ~ ~r)  M~ (17) 
mr 4 (M' )2+  rap4 

where 

M i = eiJkrJp k, m z = Xpy - Y P x  

are the angular momentum and its third component, respectively. The last 
term in (17) arises from a peculiarity of the coordinate transformation only 
and corresponds to a string ("Dirac veto")-like singularity, which is ruled 
out by another choice of the tetrad field, say 

\ o/X/P Y/P  i )  [ei~(X)]o = ( z / r ) [ - y / p  x / p  

0 

The latter yields only the last term in (17). Thus, in our scheme, by analogy 
with quantum field theory, there exists some subtractive procedure making 
it possible to obtain a finite value in quantum space-time. For the nonrela- 
tivistic limit, when Hi(x) does not depend on time, the Galilean-invariant 
Lagrangian function of a free particle acquires the form 

5~(x) = (pi)2+ L 2 (M,)2 (18) 
2m r 4 m 

In a previous paper (Dineykhan and Namsrai, 1985b) we investigated 
particle motion by this Lagrangian function and showed that, depending 
on initial conditions, a particle's trajectory is complicated and the particle 
makes a spiral-like motion along the direction of the rectilinear classical 
trajectory. In Section 4, the Lagrangian (18) will be needed to discuss the 
possibility of occurrence of anisotropy of inertia due to quantum space-time. 

By analogy with the usual definition of force, we now define its 
four-vector as the derivative 

d p  ~ d U  ~ 
F ~ = = mc (19) 

dsq dsq 

Since U ~ dU~/dsq  =0,  components of the four-force also satisfy the same 
identity F ~ U  ~ =0. We calculate the explicit form of (19) by using the 
definition of U ~ and dsq in quantum space-time. Thus, 

d 2 z  u" d2x ~ m L  oZH ~ dx a dx p 
F ~ = m - - u - y =  m - - T i +  

C d'rq cd,rq c OX ~ OX a dTq dTq 

mL Oil ~" d2x p 
+ (20) 

c Ox p dr~ 
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where the following simple connections exist between derivatives with 
respect to variables d %  and d~-: 

dx p dx e dl- 

C d'rq c d~" d~'q 

( 
c d'r 2 c d~ "2 \ d,rq / + C d'r d~'q \ d'r / 

_d2xt~(d,.i-q~-2_dxl~(d,Fq~-2d2,.l-q(d,Fq~-I 
c d'r 2 \ d'r ] c d'r \ d'r / d'r 2 \ d'r ] 

Here 

d'r = dt (1 - v2/c2) '/2 

In accordance with the definitions 

~e,  = 1 - 7 ]  ,~ 1 -  7 
(21) 

d2x ~ ( f [  _ v : ~ - ' / 2  f ' v  ( ~v2-1/2} 
f,~= 

for the usual relativistic mechanics (in the case when L = O, here f is the 
classical force), we rewrite expression (20) in the form 

OH ~" \ / d % \  -2 

ox" \ d~-) aT 2 \ a~-) 

Here the connection between the variables d% and d~" is given by 

d'rq/ d'r = (1 + 2 L N +  L2M) 1/2 

an~ (on ~ )~ 
N - - -  u e u  ~,  M = u a 

- ax e \ ax e 

and therefore 

( d~rq/ d~-)-' = I - ~ ( 2 L N +  L~ M )  +~LZ N 2 

( d % /  dr)-2 = 1 - 2 L N  - L 2 M  + 4L2N 2 
(23) 

d2%/d.r  2 = �89 + 2 L N  + L2M)-~ /2 (2LA + L2 B ) 

= �89 + L2B - 2 L 2 N A )  
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with 

r O2I~ I'~ 6 O I I ~  1 
A = c l ~ u P u  u ~ + - ( w p u  ~ +upw ~) 

Lox ox  ~ ox p J 
F {  02~I~  O~I'U" [.. OI~l'~ O2I]'U" "~ _ _  - - - -  p 3 n 

B=CLIoV   ox o oxO ox  ox~ " " "  
(24) 

aII ~ OH ~ ] 
+ - -  (wPu~ + u P w  ~) 

ax p o x  ~ 

w p = d u " / c  d z  = _ f o / m e  

Now we define the averaged force over the large scale. For this, taking into 
account expression (22) and inserting (23) and (24) into it, and carrying 
out a trace of  7a matrices, we get 

( F )  = f ~  + L2Q ~ (25) 

where 

Q~ = � 8 8  ~ 

I v = f~  (4N 2 - M )  - 2 X ~ N  - mu  ~ (�89 - 3 N A  - A N )  - rn Y ~ A  

Here 

X~ = 021~ , 8 0H~ o y ~  0II~ , 
mCax ~ ax----- T u u + ~ x o f  , = ax-----y u 

Finally, one can take the trace of  expression (25) for the force in quantum 
space- t ime by using the tetrad representation, as done above, but in the 
given case it is not so important  to obtain the explicit form of (25). 

2.4. Dynamical Equation and Quantum Mechanical Consideration Of 
Particle Motion in Quantum Space-Time 

Now, when one knows how to calculate F ~" over the large scale, one 
can use the differential equation (19) in order to find four connected 
variables x~'(7) and then z is eliminated to obtain x(t).  This procedure is 
valid in our case, since in quantum space- t ime the condition u~u ~ =  

U ~ U ~ = 1 is always invariant. This relation guarantees that initial values 
of u ~" should be chosen so that d~" is indeed the proper  time. 

Our main assertion is that even when an external force is absent, the 
particle dynamics is determined by equation (19), where in the capacity of  
force f in (21) now should be put the quantum force given by equalities 
(13b), (14), or (15b). In usual space-t ime on a large scale this is equivalent 
to the following equation: 

mc d2x~ / d~ "2 = f ~  (26) 
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where fr  is given by (21), where the force f is in turn defined by (13b) or 
(15b). 

Thus, we see that due to the quantum nature of space-time, the 
dynamics of the particle differs from Newtonian dynamics by an additional 
force fiq: 

m 5ii =f'ex +fq (27) 

where fix and fiq are external and internal forces. The latter is caused by 
quantum space-time and is given by formula (13b) or (15b), depending on 
the concrete representation of the tetrad field. We notice that even in the 
absence of an external force a particle does not move along the rectilinear 
trajectory. However, at the classical physical level the additional force (13b) 
or (15b) is very small, and as a result a particle undergoes almost rectilinear 
motion (for details, see Dineykhan and Namsrai, 1985b). In Section 4, we 
will study equation (27) in a gravitational force field. 

Now we consider the nonrelativistic quantum mechanical method from 
the quantum space-time point of view. Here we briefly discuss only the 
stationary problem of electron motion in hydrogenlike atoms by means of 
the Lagrangian function (18). According to the correspondence principle, 
in the quantum mechanical case the operator-valued effective Hamiltonian 
for a particle moving in the external potential field U(r) consists of two parts: 

= &+ ( 2 8 )  

where 

and 

121o = ~2/2m + U(r) 

~t2I = (L2/r 4) h 2 ? / m  (29) 

in accordance with (18). Here we carry out the usual substitution M2~ hZl  2, 
where 1 is the operator of the angular momentum. Further, we are only 
interested in the calculation of the contribution to the energy level of the 
electron due to the additional interaction (29) caused by quantum space- 
time. It is obvious that by this interaction the electron energy level undergoes 
an additional shift AEq, which may be estimated by using the nonrelativistic 
wave function tp(r) of the electron. After a standard calculation, we find 

1 Z4L2 h 2 / �9 [mee2\21--~-[3n2-1(l+l)] 
AEq =2n  5 (l+ l)(l_�89163 ] me (30) 

where me is the electron mass. This expression will be used in Section 4 to 
obtain bounds on the value of the fundamental length. 
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3. QUANTIZATION OF GRAVITY (PRELIMINARY RESULTS) 

3.1. Reformulation of the Equivalence Principle 

It is well known that the equivalence principle between gravity and 
inertia can be understood as a reaction of a physical system on the external 
gravitational field. It is asserted that no external static homogeneous gravita- 
tional field whatever can be detected in a freely falling elevator, since in 
this field an observer, test body, and the elevator itself acquire the same 
acceleration. Following Weinberg (1972), one can easily prove this for an 
N-particle system moving with nonrelativistic velocity under an action force 
(for example, electromagnetic and gravitational) f (x~-xm)  in the external 
gravitational field. The equation of motion is 

mn d2xn/dt  2= m~g+Y~ f ( x , - x m ) ,  n, m = 1, 2 , . . . ,  N (31) 
m 

Assuming the following non-Galilean transformation of space-time coor- 
dinates 

1 2 t t x'--> x - s g t  , = t (32) 

one finds that the term with g is compensated by the inertial "force" and 
the motion equation takes the form 

2 t r m. d x , / d t  =Y. f ( x ' - x ' )  (33) 
ra 

Therefore, an observer O using coordinates x, t and a freely falling colleague 
O' using coordinates x', t' do not find any difference in the laws of mechanics, 
with the exception that O will observe the influence of a gravitational field, 
but O' will not. 

It is easily verified that due to the additional force given by (13b) or 
(15b) in space-time on a large scale, continued from the quantum one, the 
equivalence principle formulated by the above formula is not valid. Indeed, 
equations (31) and (33) take the form 

d 2 x n  
= f q ( X ,  x ,  x ,  t )  + m.g+• f(x. -xm) (34) mn dt---- i- 

m 

and 

dZx!.2 ..r t t t 
m. = fq(X', x', x ,  t ,  g ) + Z  f ( x . - x m  ) 

dl m 
(35) 

In accordance with transformation (32), the force fq(X', i ' ,  i ' ,  t', g) depend- 
ing on g has quite a different structure than the force fq(X, ~, i ,  t). Therefore, 
in contrast to the standard formulation of the equivalence principle, in our 
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case complete compensation between inertial and gravitational forces is not 
achieved and both observers O and O' should detect an influence of the 
gravitational field. Hoffever, for the second observer O' this influence is an 
infinitesimally small value, of the order of O(L2). 

Thus, for a static homogeneous gravitational field, the equivalence 
principle is slightly violated in quantum space-time and the difference in 
mechanical laws for observers O and O' is of the order of O(L2). For 
classical physical phenomena this may be excluded from consideration. 
However, as will be shown in Section 4, for processes taking place in the 
microworld, where the quantum force fq in (13b) depends on the particle 
mass and energy by the formulas w = e / h  and K = p / h = m v / h ,  this 
difference is significant and gives an antigravitational effect--a friction fifth 
force at least for quasiclassical particles. 

An analogous situation holds when inertial forces do not completely 
compensate gravitational ones for systems freely falling in a non- 
homogeneous or time-dependent gravitational field (as in the above case); 
one can reformulate the equivalence principle in quantum space-time by 
the assertion that at every point of space-time on a large scale and in an 
arbitrary gravitational field one can choose a "quasilocal inertial" coordinate 
system such that in a sufficiently small neighborhood of the given point the 
laws of nature [given by the special theory of relativity reformulated above, 
in particular, equations of the type of (13a)] will have the same form up 
to the order of O ( L  2) as in an unaccelerated Cartesian coordinate systems. 

Summarizing, we note that the introduction of the hypothesis about 
the quantum nature of space-time at small distances leads to non- 
homogeneous and anisotropic space-time on a large scale. However, these 
structural changes differ from homogeneity and isotropy by the order of 
O(L2). Thus, it is natural that the equivalence principle is only approxi- 
mately valid and may be formulated only at this level of accuracy. 

3.2. Gravitational Forces in Quantum Space-Time 

Consider a "freely" moving particle under the action of purely gravita- 
tional forces. Here the word "freely" means that an additional force caused 
by the quantum nature of space-time also acts on the particle. According 
to the equivalence principle reformulated above [we call it the "slightly 
violated principle of equivalence"] there exists a "freely" falling system of 
reference ~ in which a particle moves along an almost rectilinear trajectory 
given by the equation 

d2~ ~ 1 
dr 2 - m f '~(r (36a) 

where the averaged force f'~ is proportional to the value of L 2 and is given 
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by expression (21); here f is in turn determined by (13b) or (15b). The dr, 
in (36a) is the proper  time 

d r2 = ~7~ d~ ~ d~ ~ (36b) 

[compare this with equations (3) and (26)]. Now take a curvilinear quantum 
system of reference z" connected with the usual curvilinear one x ~" by 
relation (1). In this case, the coordinates ~:~ of the freely falling system of 
reference are functions of  z ~ and x" ;  then equation (36a) acquires the form 

d { 0 ~  ~ dz~'~ a~ ~ d 2 z "  02~ ~ dz  ~ d z  ~ 1 

drl-=-\az" --Idr ] Oz" d r ~ + O z  ~ Oz ~ dr  d r  m f ~ ( ~ )  (37a) 

Here one should define an inverse operation of a z " / O x  ~ = 6~ + L a H " / o x  ~. 

What do we mean by O/Oz~? For an explanation of  this, we multiply this 
equation from the left-hand side by OzA/O~ ~ and get 

OZ x O~ c~ dZz  ~ Oz x a2I~ ~ dz  ~ dz  ~ 1 az A 
(37b) 

a (  ~ az"  d r  2 a~ ~ a z "  az ~ dr d r  m a~ ~ f " ( ~ )  

It is obvious that in our case the welt-known multiplication rule 

O~ ~ Ox a 
- a ( 3 8 )  ax ~ a~: ~ - 6~ 

for e-number variables ~r and x ~ does not work. 
A generalization of the definition (38) is crucial for noncommuting 

variable z ~ in the quantum space-t ime case. Furthermore, because of 
noncommutabil i ty of  z ~, an operation of the type of (38) is not commutative, 

a~ ~ az A o~ ~ ax p oz A ox a a x ;  az ~ oz a ox p 
r - -  - -  (39) 

az"  o~ ~ - a x  p oz ~ ax ~ O~ ~ - O z  ~ Ox p ax ~ Oz ~ 

Here we have used definition (38). Noncommutabi l i ty  of these Jacobians 
has a deeper meaning and is caused by the nonequivalence properties of 
the usual and quantum space-t ime with respect to the transformation law 
leading to the passage from one to the other. Indeed, OxP/Oz" corresponds 
to the Jacobian of t ransformation from quantum space-time coordinates z" 
to the usual ones x ~ and vice versa o z X / a x  ~ means that the passage is 
carried out from x ~ to z ~ points. For simplicity, let indices /x = A = 6 
coincide; then the transformation corresponding to (39) may be illustrated 
by means of Figure 1. Thus, there are two possibilities: 

a X  p OZ A OZ A a X  p 
- -  r 6 ~  ( 4 0 )  

Oz ~" Ox p 6~, Ox o Oz ~ 

o r  

Ox p az ~ Oz ~ ox p 

Oz" Ox ~ # 6~"' Ox o Oz ~ 6~ (41) 
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a b 
Fig. l. Illustration of the nonequivalence of two cycle transformations: (a) The passage from 
quantum space-time point z ~ and the return to it through the usual point x ~ and vice versa; 
(b) the transformation starting from the usual space-time point x p and the return to it through 
the "quantum" point z s. As a result, the points move along closed lines; here doubled lines 
correspond to the initial positions of moving points, 

The first term in (40) means the strict return of  point  z ~' in quan tum 
space- t ime to its initial posi t ion after an "excurs ion"  over usual space- t ime  
( through its point  x p) (Figure la). In turn this means that the latter does 
not  possess any strange properties leading to different results with respect 
to the coordinate  t ransformation.  For  usual space- t ime this should be so. 
But it is opt ional  to expect the same rule for quan tum space- t ime [second 
term in (40)]. Strictly speaking, in this case the strict return o f  the usual 
space- t ime point  x ~ to its initial position after "excurs ion"  over quan tum 
space- t ime ( through its point  z ~) is impossible, due to the quan tum nature 
o f  the lat ter  (Figure tb).  Further,  for case (41) there appear  situations 
contrary to the ones discussed above. 

Thus, the quest ion is how to choose between the two possibilities (40) 
and (41). Here we prefer  to use rule (40). Our  next problem is to define 
the opera t ion OxP/Oz ~ in accordance  with this rule. One can verify that the 
definition 

O x P _  p _ L O I I P +  L20II~  Oil~ L 30II~ OII~ OII~ . . (42) 
9z  ~* - 8 .  Ox ~ Ox ~ 8x  ~ 8x  ~ 8x  ~ 8x  ~ 

satisfies the first condi t ion in (40). With this definition, we have a series o f  
equalities, 

OX p OZ ~ 

Oz~, Ox p 8~ 

L2(OH ~ Oil A Oz~ Ox= 8~ + - -  

8x  ~ Oz ~" \ O x "  Ox p 

8x  ~ Oz '~ 8 :  + L 2 ( O ~  OIIA 

Oz ~ Ox ~ \ O x  Ox p 

az ~ ax a 

Ox" Oz ~ = 8~ 

OFf A OIIP~ 

Ox p ~ x ~ )  (43) 

OII A OIIP~ 

ox" 7x"/ 
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a p If we use the tetrad formalism IIP(x) = y e~(x) ,  then the second term in 
the second and third equations of (43) acquires the form 

L 2[OII~ OIP OII" OIIP\! Oe~ Oe~ 
\Ox"  Ox ~ Ox ~ ~X ~ ] = 2iO'abox-----~ OX ~ 

L 2 (44) 

where 

1 a b 
~ o ~ = ~ ( ~  ~ - ~ ~  

It is important to notice that the difference in transformations (40) and (41) 
is proportional to the L 2 term, i.e., the commutator between them is given 
by 

OzA Ox~ 1 �9 2 Oe~ Oe~ (45) 
OxO, ~z~ j _ = 2~L tr~b OX----- 7 OX p 

Thus, in the quantum space-time case transformation Jacobians have quan- 
tum nature, whose commutator is given by a relation of the type (45). 

Now we return to equation (37b). Taking into account expression (43), 
we have 

d2z~ . 2 Oe~ Oe~ d2z ~ dz ~ d z ~ ' = l f ~ ( x  ) _  
dr  2 1-21L o'.bOx--- ~ Ox p dz 2 ~-F~.(z)-~z d~" m (46) 

On the right-hand side of this equation we have used the following approxi- 
mation: 

OzA o, . Oza Oxa 
- ~ g f  (~) Ox a O ~  f '~(~) 

( o o OIIa~ x ~ x ~ 
= a ~ + L ~ x ~ / ~ g  f (~) 0 ~ x ~ - ~ f  ( ~ ) = - f  (x)  

since the f o r c e F ( ~ )  is proportional to the L 2 term. In equation (46), F~,(z) 
is the affine connection for the quantum space-time case, determined by 
the following formula: 

Og A 0 2 ~  a 

F~.(z) - 0~:~ Oz ~ Oz ~ (47) 

It is obvious that due to the noncommutability of z ~ variables, the symmetric 
property of  F ~ ( z )  over indices v and/x is violated in our case. We separate 
symmetric and antisymmetric parts in F ~ ( z ) :  

r~.(z) = ~ rs,~(z) + r o,~(z) 
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where 

r , % ( z )  = ~  \ 0 C  0~ ~ 0~ ~ 

1 (0.z ~ o~C 

Oz ~ 02~ ~ 

- -  ~ o C  az-; o ~ V  

oz o2e2 
a~ ~ Oz" Oz ~] 

(48) 

where 

Q ~ " =  vl~ Ox - - - 7 -  o-ix Ox - - - y - I v 8  Ox ~ Ox ~ O x  ~ 

o2H . OH x OH x o2H ~ 
- - k f = u  + f . .  

Ox" Ox ~ Ox" Ox a Ox ~ Ox ~' 

A l{A}OII~Olla  {+ A }OII"OII '~ 
f ~ "  =-2 o'6 Ox ~ Ox ~ o-p~ Ox ~ Ox"  

_{ p }orPoH~ aII~ 021"[ x 

o-tx ax  ~ ax  ~ ox ~ ox  ~'Ox ~ 

From equation (14) we see that the additional force caused by quantum 
space-time disappears for the photon or neutrino. Moreover, their proper 
time (36b) is not independent, since for these particles the right-hand side 

Now we calculate (47) and (48) and use the usual affine connection 

{}I'}__OXAO2' ~ 
Vl~ O~ ~ Ox ~ Ox • 

For this purpose, we notice that 

Oz x Oz a Ox" 0 Ox ~ 0 

0.~ ~ Ox ~ O( ~ -~z ~ f ( z ) -  Oz ~ Ox , ~ f ( z )  

Making use of these definitions, we obtain the following expression for (47): 

F~.(z)= Ox ~ Oz ~ Oz" Ox ~ Oz ~Oz ~" 

Further, in order to estimate this equality, the inverse operation (42) should 
be used. As a result, we have 

FsA,,~,(z)={ A } +  L Q ~  + L2P'~,,~ (49) 
u/z 

1 2 f A ] / /0 I~  ~ o3Fi a 0111 B 0II~ 
ox. ox--;/ (50) 
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of (7) or (36b) vanishes. Instead of z, one uses o----~:o, so that equations 
(36a) and (36b) take the form 

d2~ ~ d~: ~ d~:~ 
-do-2 = 0, rill3 do" do- 0 

as in the usual case. By the same method as above, the motion equation in 
a quantum coordinate system in an arbitrary gravitational field reads 

d2zA 2 Oe~ Oe~ d2z ~ dz ~ dz ~ 
do2 4-2iL O-ab~---X~ ax ~ do.~ ~rL(z) do- do- - 0  (51) 

where F~,(z) is expressed by the same formula (47). 

3.3. Proper Time in the Quantum System of Reference 

The proper  time (36b) can also be written in an arbitrary (quantum) 
system of reference: 

d ~  or ~ ,~ a~ ~ -= - -  d z  ~ z  ~ d z  ~ (52) 
~,~f3 O z  ~ 

o r  

o (  ~ ox" clz,~ a~ ~ ox__~ ~ dz ~ 
d~'2q = ~,~3 0x--g Oz---y Ox"  az" 

Since, by definition, 

therefore 

a~ ~ a~ ~ 

g n m  ( X )  = "rlo~ ~ OX n OX m 

cgX n cgX m 
d~ = g.m(x) ~ dz~ -?~; dz" (53) 

0z 0z 

Now the commutator [dz" ,  a x m / a z  "] must be defined. Making use of (42), 
we find in the tetrad formalism 

ox"] o4" 
dz•, Oz ~ .]_ = 2io-abL 2 --Ox ~ --Ox p dxP 

Substituting this into (53), we have 

OX n OX m 

~ gnlq, l ( x ) - -  - -  dz ~ dz ~ 
a %  oz,~ az ~ 

Ox" . 20e'~ Oe~ dx  p dz ~ 
+ g , m ( x )  Oz--- ~ 2to'~bL Ox----y Ox---- S 
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Due to (42), the last term goes to zero with an accuracy o f  L 3. Thus, 

dr2q = g , ~ ( z )  dz ~ dz" (54) 

where g , ~ ( z )  is the metric tensor in quantum space-time, which is defined 
as 

OX n OX m 

g , ~ ( z )  = g . , . ( x )  oz---; oz  - - 7  (55) 

For the photon or neutrino, the proper time (54) acquires the form 

dz ~ dz ~ 
g . . (z )  dcrq do'% - 0  (56) 

where o-q = z ~ 
Finally, we express dz2q through the usual proper time d~ "2= 

g , m ( x )  dx"  dx  m in an arbitrary gravitational field. One can easily obtain its 
explicit form if representations (1) and (42) are used. Thus, in the tetrad 
formalism it reads 

dz~ = g.m(x) dx" dx  m + 4iL2g.bg.~(x) Oe--~p~ Oe____~ dx ~ d x  m 
O x  ~ O x  P 

(57) 

This expression will be used below. 

3.4. Quantization of the Metric Tensor 

First, we notice that g ~ ( z )  is the covariant tensor in quantum space- 
time. Indeed, let 

o~ ~ a~ ~ 
g . ~ ( x )  = ~t3  Ox" Ox ~ 

where s are local inertial coordinates. Then, in any system of reference 
z" the metric tensor is given by 

o~ ~ o~ ~ o~ ~ ox P o~ ~ ox ~ 

g ' ~ ( z )  = ~7,~t~ Oz ~ Oz ~ - ~ O x P  Oz" Ox ~ Oz" 

and therefore 

O x  p O x  ~ 

g ~  = g~ oz"  oz" 

From this, we see that g ~ , ( z )  is indeed the covariant tensor. In the quantum 
space-time case, the choice of its inverse tensor is somewhat difficult. If, 
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by analogy with the usual theory, we use the definition 

3z a 3z ~ Oz a Ox ~ Oz ~ Ox a 

g~"(z)=-a~ ~ ~ ~ ~ - o x  ~ ~ ~ ~ ~ ~ ~ n ~ 

Oz a 3z ~" 

= g~  (x) o T  o T  (58) 

then 

O Z  h O Z  ~ 

g ~ " ( z ) g . ~ ( z )  =Ox p Ox ~ g ~  
Ox a Ox ~ 

Oz ~ Oz ~ ga~(x) 

Making use o f t h e  last equality in definition (43), we get 

Oz a Ox ~ 
g a ~ ( z ) g ~ ( z )  =Ox---7Oz--TgPa(x)g~,(x) 

Oz ~ Ox" oe~ Oe~ 
_ _ 6~ +2iL2~ob - -  

3x p Oz ~ Ox ~ Ox o 

Here we have again used definition (43) and the standard relation 

g P ~ ( x ) g ~ ( x )  = 3~ 

Analogously, taking into account definition (58), one can obtain 

q 
g x ~ ( z ) g  (z )  = 6 ~ +  " 2 Oea Oeb 

~ 2 t L  g~bOx---7Ox~-ggav(x)g~ ) 

�9 2 Oe~ Oe~ 
= 6 A  + 2 t L  ~ b O X  ~ 3X q 

Collecting these results together, we have 

A ~  ~ P  A p g ( z ) g . ~ ( z ) - g a ~ ( z ) g  ( z ) = 8 ~ - 6 ,  (59) 

Thus, definition (58) does not satisfy the condition of invertibility of gAtZ(Z). 
I f  instead of (58) we define another representation 

g~(~)  = g~"(x) oz" oz ~ ~_2 ~m[o n~ on q on ~ on~] 
OX a Ox" L g ~ x q  OX" Ox m ~X q /  

(60) 

then it is easily verified that 

. . . .  P P (61) g ( z ) g ~ . ( z )  = ,~ . ,  g, . , . (z)g (z )  = 6~ 
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However, because of the noncommutabil i ty of g ~ ( z )  with respect to indices 
/x and v, for any case it is optional that relation (61) obtained by means 
of (60) preserves its form, for example, 

L2g~(x)g~,(x)(Oa_~ 0H" Oil ~ aII~'~ g'~(z)go~(z)= 6~+ 
ox" ox" 7x / 

cr_~ 2 f OIIq Ol-I~ OII~ Ol~q~ 
g~(z)g~o(z)=6 o L ~xO Ox q Ox q ~xoj+LZg~'(x)g~o(x) 

(orI  on = ore]  
X\ox8 Ox" Ox" Ox ~] 

+ L2g"~(x)g~v(x) Ox m Ox" Ox q] 

\ Ox Ox ~ Ox ~ ~ / 

It is natural that in our model the metric tensor consists of  two parts; 

ox. oxq 
(62) 

Oz v Oz ~" ] 

etc. 

a symmetric part 

s 1 Ox" Ox m 
=2 g"m(X)(0T OZ" 

and an antisymmetric part  

a 1 8 x "  Ox m 
guY(z) = 2 g'm(X)(0--~ OZ" Oz" Oz" ] 

= iL2O.abg,,,,(X ) Oe: Oe~ (63) 
OX ~ OX ~" 

Now we find the commutator  of  g, , ( z )  at different points x ~ and y~ 
of space-t ime on the large scale. Thus, 

zx"- x~ + zy" = y~ + LII"(y) 

It is expected that according to translation invariance the commutator  

[g~(zx) ,  g~,,(zy)]_ = F ( x - y )  (64) 

should be a function of the variables x " - y ~ ' .  From a physical point of  
view, after some averaging procedure (this is similar to taking expectation 
values over the vacuum state in quantum field theory) the averaged function 
(. �9 . IF(x -y ) [ .  �9 .) can be interpreted as a wave function or particle propa- 
gator transmitted gravitational signal between points x r and yC We show 
here that even for the simple case (5) this assertion holds. 
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Thus, inserting the inverse operation (42) in the explicit form (55) of 
g ~ ( z ) ,  we have 

OII ~ oF[ ~ L 2 oIIq OII ~" 

g ~ ( z ~ ) = g ~ ( x ) - L ~ x ~ - L ~ x ~  + Ox" Ox q 

+ L2 OH" OHm+ L2 Oil q OII ~ 

Ox ~ Ox ~ Ox ~ Ox q 

Multiplying this expression by g,~(Zy) from the right-hand side and taking 
the difference between this and the inverted multiplier, one obtains 

[ g ~ ( z ~ ) g . ~ ( Z y )  - g ~ ( z y ) g . ~ ( z ~ ) ]  = 2 L 2 I  

where 

~. FOe2(x) ae;(y) ~ Oe~(x)  Oe; (y ) ]  

=z, o k ox j 

Consider two-dimensional space-time u,/x = 0, 1 and use the tetrad field 
(5). Then, after simple calculation we have 

[g~(z~), gtxv(gy)]- = 2 L 2 I  (65) 

I = 6icrol(w2/c2+ k 2) sin[w (t~ - ty) - k ( x  - y ) ]  

croa = (1 /  2i  )( yo y~ - ')/17o) 

From the definition (65) one can choose the vacuum-like state in quantum 
space-time, and the peculiarity of its structural property is that it has spinor 
character satisfying the following conditions: 

UOIgO = 1 

For example, assuming 

Uo = 0 , 

we get 

~oYoy~Uo = 1 (66) 

Uo = U*yo = (1, 0, 0, 0) 

(u0j[u~(Zx), g~(zy)]-[Uo) 
= 12(co2/c2+ k 2) sin[co (tx - ty) - k ( x  - y)] (67) 

We notice that in the more general case [g~(zx), g~p(Zy)] should be propor- 
tional to L 2 and gives a fourth-rank tensor G ~ . A p ( x - y ) .  It seems that a 
tensor of this type, after lowering some indices /xu, Ap, determines the 
propagator of the graviton-like field. 
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3.5. Connection between g,,~(z) and F~,(z) 

As shown above, in quantum space-time, the field defining gravitational 
force is expressed through the "affine connection" F~(z ) ,  whereas the 
proper time interval is given by the "metric tensor" g ~ ( z ) .  Now we show 
that g,~(z)  is also the gravitational potential, i.e., its derivative gives the 
field F ~ ( z )  up to O(L2). 

We recall that the metric tensor is given by expression (55), 

OX" OX m 
g~v(Z) = gnm(X) 02---- ~ az--T 

o r  

aC a~ ~ 
g ~ . ( z )  = ~ . #  az  ~ a z  . 

Differentiation of the last term with respect to z A yields 

I1 - Oz A = W ~ a z  ~ ax o ~ -  ~-~z~/ 

= ~t~az---; ~x p \ a z " ]  az----;-~az ---# ax ~ \az ]J 

Further, making use of the commutator property 

[0x. o r l  o ~ 
az ~' oz" J = L= ox~ ~ 

I ~  

we obtain 

I1 = ~?at3\Oz-- s a--z~ az v oz~, az a ~ ~ ~ xh~ ax 6 ax a x . ]  

where 

I ~ -  OH" 0II 8 0II ~ oH" (69) 
--OX;t a x  ~ a x  ~ a x  x 

Now taking into account the definition (47) for F~.(z) and equalities (43), 
one obtains the following relation: 

oS_~ r F~.(z) 02~  ~-L2A~ O] ~ (70) 
Oz ~ - a z  ~ oz" ax ox" 

where 

A~ - o O~t3 Oxq "-2io'~b Oe~ Oe~ 
- -  a q  a x ~  a ~  ~ a q  - ax----~.ax----- ~ 
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In the usual theory of gravity one has the well-known relation 

OX h OX ,u" ON q 

where {~} is the usual affine connection given above. Then, expression (70) 
can be rewritten in the form 

02~:r 0~:r r . ~ ( z ) - L  p 2 o__Oet3 ~ q ] 
Oz ~ Oz ~ - O z  o Iq  oxp [.tzv] 

(71) 

where 

OII" Oil ~ OII ~ OII" 
o _ (72) 

I q -  OX q OX n OX n OX q 

Substituting equality (70) into (68), we have 

Og.,.(z) O~ ~' F~ .  Osc~ O'~'~ O~t3 F~ + L2N~, .  (73) 
Oz a - Oz o Oz---~ rl,~ + Oz ~ Oz p 

where 

Now one should define the commutator [ F ~ ,  a~/az~]_ .  By definition, 

az- ~ ~ - O z  ~ a~ ~ az ~ az~, ~ ~ a ~ , - _ _ ~ q  ox.  
(74) 

where we have used the commutator 

0x, 0z ] 
OZ ~' O X J J _  : _ ~ , ]  

and 

8o Oe'  O2e ~ Oe ~ Ox ~ 0 {Oe  ~  (75) 
a, ,a~-Oz~,Oz aOz ~ Oz~,Oz A Ox ~  z~]  

We note that our calculation procedure in (74) and (75) has consisted in 
moving O ~ / O z  ~ through Fla.(z). Thus, in (75) we again use the commutator 

oe F~176 1 = oe 
ox p k oz ~' oz" J_ ~  p I ~  

and the result reads 

2 i~ a~/3 a2~  ~ 
t3,~ = Ox" t3,~ + L I .a  -~7 

a,,x~ Oz x b,,,~.. Ox ~' Ox ~ 
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Here the term 

is in turn reduced to 

Namsrai 

8o 0e 0 (0e 3 
b~.~- Oz ~ Ox ~ \Oz"] 

8~ 8~ 0~8 oxm O=~ 
bw. = c~,~.-t" Og ~ Oz~, Ox '~ Ox m 

After some calculation the first term of this expression acquires the form 

8o oe ~ o {ox m) of ~ 
c.~. =-Oz ~ Ox ~ \Oz" ] Ox ~ 

= ~x ~ \ a z " ]  Oz Oz"  ax  ~ Oz ~ 

0 (Oe 8 -km~ 02e 8 oxm] O~ a 

+ L ~ x ~ - \ T x ~ . }  ox~oz ~ o z . j o x  "~ 

Collecting these cycle equalities together, we have 

[O~ ~, 
oz--; rL(z) ]_  

- L I . q  Ox---: Ox ----= xtx 

0~8 ~ q "~ 0~81 P l ) 
+ I ~ x q  [ h m j + I ~ x k  ( h m j  +o~Q~,~. (76) 

where 

Ox k I.~ 

Finally, due to expression (76), equality (73) takes the form 

og.Zz) gp~(z)r~(z)+g~pF~(z)+ LRD~ 
Oz h 

where 

- (I.9 + Iv.) 

k~ q 0 km 

(77) 
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In order to express the affine connection F~(z )  through the metric 
tensor g~(z) ,  we add to (77) the analogous relation with rearranged indices 
/z and A and subtract from (77) the analogous relation with rearranged 
indices u and A. As a result, we get 

Og,~,(z) F Og;,,.(z) Og~;`(z) 
OZ A OZ ~ OZ u 

= g o ~ ( z ) r ~ . ( z )  + g . o ( z ) r ~ ( z )  

O O + go~(z)r ~;̀  (z) + g ; , o ( Z ) V ~ , . ( z )  - go;, ( z ) r  ~ (z) - g.o ( z ) r  ~;̀  (z) 

+ L2(D~,, + D~, - D~;`) (78) 

Further, for terms of the type gp~(z )F~(z )  on the right-hand side of 
(78) their symmetric and antisymmetric parts should be separated by using 
relations (48), (62), and (63); for example, 

s 2 a O 2 p go~(z)r~ = (go~ + L go~)(r~,;`. + L r~,;`.), 

Thus, all symmetric parts give 2g~o~(z)F~;`u(z) and the remaining mixed 
a p s p terms go~(z)F~,A.(z)+go~(z)F~,~(z) ,  etc., should be joined with terms 

D ~ , . . . .  As a result, we have 

0g.~(z) ~ og; ` , . ( z )  o g , ~ ( z )  . o 2 ;` 
- -  2gp~.(z)Fs,;`~(z)+ (79) Oz;` Oz ~ Oz" - L 8,~,. 

where 6 ~  is an expression of the type of D ~  and its explicit form will be 
presented below. 

Now, on the right-hand side of (79) we return again to the complete 
expression for gp,.(z) and FAO.(z), 

s p 2 h 2go,.(Z)rs,;,.(z) + L 6 ~  
2 a p 2 p 2 ;` = 2[go~(z)-  L go~(z)][F ; ` . ( z ) -  L F~,A~]+L 6.~ 

= 2go,,(z)r~,.(z)+ L2[r3~,.-g,,,,,(x)l~,'~ { P } - '~  ,. 'x'~l~k f p ] , .' ~"].akJ J 
(80) 

where 
a 1 nm 1 

Substituting (80) into (79) and multiplying the obtained expression by 
g ~ ( z )  from the left, we get 

_ _ _ A  o- F ~ . ( z ) = ~ g ~ ( z )  -~ Oz" 0-~ / 2 A. (81) 
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where 

o- = 2g,.~,(x)g,,m(X)i~,~{ P l x } _ g , . , ( x ) g  (X)I~{A/z } A A,~ n m  

- g ~ ' ( x ) g o ~ ( x ) I  ~ + g  (x)6 , . .  

o-u A = g (x)M~, ,  

M~:' -- Iz~g~p(x) 6k + I ~ g ~ ~  6k 

_ I~k P p~ q 

_ _ 2 g . , , , ( x ) l , ~ { P } + g p i ( x ) { P } ( i i ~  i,~ - 2 I . x )  

-2 I . , ~ )+2gkm(x )  ~X ~ OX ~ OX ~ 

O2II m Oil k O[I k 02I] m 02II " OII~ ~ . . . . .  

Ox ~Ox ~ Ox ;~ Ox ~'Ox ~ Ox ~ 9x ~ Ox "9xa,]  

Here we use the definition 

g ( z ) g o ~ ( z )  : , ~ 2 +  ~ ~. ~, ~" L g (x)g , ,n(x) Io ,  

Thus, we see that to the accuracy of the L 2 term, g~,(z)  is also the 
grivatational potential in quantum space-time, i.e., its derivative defines the 
field F ~ ( z )  by formula (81). 

Finally, we note that the antisymmetric property of the metric tensor 
g~..(z) and also the affine connection F~,(z) are connected with the existence 
of the torsion tensor. It seems to us that in the whole space-time the latter 
gives rise to a slight violation of the homogeneity and isotropy of the 
universe, or in the language of particle motion, in the inertial system of 
reference the law of motion acquires some change in accordance with (27). 

3.6. The Newtonian Approximation 

Consider the motion equation (46) and find its Newtonian version. Let 
a particle move slowly in a weak stationary gravitational field. Before 
investigating this equation it is necessary to discuss some problems concern- 
ing proper time defined by formula (57). First, for calculational convenience 
in equation (46) differentiation with respect to d% should be replaced by 
dr = [g.m(x) dx" dxm] t/2 (here we use a system of units in which c = 1 and 
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Xo = t). This is achieved by the fol lowing substitutions: 

a _ a  
d% dr \ d r /  

d 2 d 2 (d%~1-2 d {a%'~ - 2 a G ( a ~ . ] - '  

dr~- a~ ~ \ ~ /  --~ k ~ l  T~ = \ ~ )  
where 

or 

[" 2 �9 2 O e P a ~ d x ~ d x m ]  1/2 &o=Ld,~ +4,L cr,~bg,,,,,(X)~x~ OX 
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(82) 

dTq_[ �9 2 ae~ ae~ dx~dx'n~] 1/2 
d-7- 1 +41L ~7obg.~(X) aX'-" ~ OX p dr -d-f~ ] 

If the particle is sufficiently slow, one can neglect dxi/d~ " (i = 1, 2, 3) with 
respect to dt /dz  and write 

(d'rq/dr) -1 -~ [1 + l(dt/dr)2] -1/2 = 1- �89  2 

( d%/ dr) -2 = 1 - I(  dt/ dz) 2 

dz ~ - ~ 1 - ~ \ dr /  J 

0g.o(x) dx* Oe• c)e~ ( d , ~  2 
• 4iL2crab OX a dT Ot OxP\dzJ 

(83) 
+4iLZcr.bg.o(X) a~ 2e: dx ~ Oe~ ( dt~ z 

ox ~ a.~ ~\&J 

+4tL cr.bg.o(X ) -~ Ox p Ox ~ -~ \-dr] J 

I = 4icr.bL2g.o(X) ae~ ae~ 
at 3x p 

Thus, after the substitutions (82), equation (46) takes the form 

dr 2 \ d r /  - ~  \ aT J dz 2 \ d r /  

2 ae~ ae~ d2z" 
+ 2iL cr.b ~x ~ oX o dr 2 

azO(<)-'az.(a% -1 
+F~.(z)-~T \-~7] dr \ drJ  =lf~(X)m (84) 

where the explicit form of F~#(z) is given by expressions (48)-(50). 
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Now inserting these formulas for F ~ ( z )  into (84) and carrying out the 
averaging procedure (in the given case it is reduced to taking the trace of 
7 a matrices), we obtain the following equation: 

dr ----f-+ [ OOJ k dz] 

where in the nonrelativistic case one can put f~  --- 0. Further, we proceed 
according to the usual theory. Since the field is stationary, all time derivatives 
of g~(x) disappear, and therefore 

{~0} 1 0 g o o  
= --~ g ~ ( x )  ~  ~ 

Moreover, if the field is still weak, one can introduce an almost Cartesian 
system of coordinates in which 

Thus, to first order in h~r one has 

( a } l ~ 7 ~ t ~ O h ~ 1 7 6  
oo = - 2  ox ---~ 

Substituting this expression for the usual affine connection into the motion 
equation (85), we get 

t 2 d2x i 1 [ d \ i 1 i d2t 
d~ "2 - 2  ~-d-~) V hoo+~fq, dz2-O (86) 

where f~q is the nonrelativistic quantum force given by (13b) and (15b) for 
the general case and by (14a) and (14b) for the concrete cases. The solution 
of the second equation in (86) is dt/dz = const, and therefore 

d2x '=l  Whoo+ l--fq (87) 
dt 2 z m 

The corresponding Newtonian theory in accordance with equation (27) for 
quantum space-time gives 

dZx~- -V '~  + l f q  (88) 
dt 2 m 

where ~b is the gravitational potential, which for a spherical body with mass 
M is given by the formula 

c~ = - GM / r 
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Comparing (87) with (88), one can conclude that 

hoo = -24~ + const 

This is the usual result. So, assuming const = 0, we get 

hoo = -2~b, goo = - ( 1 + 2 4 ) )  (89) 

The gravitational potential is of  the order of  10 -39 o n  the "surface"  of  the 
p r o t o n ,  10 -9 on the surface of the Earth, 10 -6 for the Sun, and 10 -4 for 
white dwarf  type stars. 

4. C O N S E Q U E N C E S  OF QUANTUM T H E O R Y  OF GRAVITY 

4.1. Antigravitational EffectmFifth Force in Quantum Space-Time 

Now consider the very interesting possibility that the additional force 
caused by the quantum space- t ime structure gives rise to an antigravitational 
effect at least in the motion of quasiclassical particles for which energy and 
momentum satisfy the quantum mechanical relations E = hoJ and p = hk. 
As shown above, for the concrete case (5), depending on the tetrad field 
property, the additional force (14a) or (14b) has two different natures: 
oscillatory and friction. We are interested in the friction case only, since 
the oscillating case requires numerical investigation and solution, which is 
beyond the scope of this paper.  Our aim is to restudy the simple problem 
of the motion of a "freely" falling quasiclassical particle in the presence 
of  the internal friction force in quantum space-t ime.  In two-dimensional 
space- t ime on a large scale continued from the quantum one, the motion 
equation (88) for the problem of finding the height ( H  = x) of  a falling 
particle in the Earth's acceleration field g = 980 cm sec -2 in the presence of 
the quantum friction force takes the form 

= -2L2k22 q- g 

where for a quasiclassical particle k = my~ h = mYc/h. Then this equation 
can be rewritten 

-}- OL~2X : g~ Od : 2 L a m 2 / h  2 (90) 

To integrate this equation, we make a change of variable 

= u(x) ,  2 : u'u, u '= d u /d x  

Thus, the equation for u acquires the form 
u ' (u+~u  3)=g 

or after simple integration 

�89 +~o~u4= gx + r (91) 
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Without loss of generality we assume u (0 )=  0, giving c = 0. In our case 
a << 1, and therefore we can easily obtain the solution of (91) and (90), 

(2gx)l/2 ( l +6 gx) = t + c I (92) 
g 

where the integration constant is determined by the initial conditions 

x(t)[t~o=O and x(t)[,=r=H 

In this case, the classical free fall time is 

T = ( 2 H / g )  1/2 

However, due to equation (92) this time is changed and takes the value 

t = T(1 + l a g H )  

It is important to notice that by equation (90), the constant a depends on 
the mass of  the particle. Therefore, the free fall time is not the same for 
particles of  different weights. Let two particles with masses ml and m2, say 
a proton mp 
are different: 

where 

Thus, 

o r  

and an electron me, fall from height H ;  then their fall times 

tp = T(1 +~apgH) 

te = T(l +~a~gH) 

Olp :2L2m2p/h2, ae =2L2m2e/h2 

tp - te = At = ~gH(ap - ae)H 

tp/ te = 1 +~gH(ap - ae) 

From this, we see that the free fall time for a heavy particle (proton) is 
longer than that for a light particle (electron). For the proton and electron 
the relation between their fall times is 

t p - T  a p ( m p ]  2 
. . . .  3,4 • 106 (93) 

te-  T ae \me~ 

Indeed, if quantum space-t ime structure plays a role as a fifth force in 
processes in the microworld, then the free-fall time relation of microparticles 
may be measured experimentally using relations of  the type of (93). 
However, the absolute value of t q - T  is very small and depends on the 
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value of the fundamental  length. For example,  let a quasiclassical object 
with mass of  the order of  the Planck mass rnp l -10-Sg  fall from height 
H = 100 cm; then its falling time becomes longer with respect to the classical 
one T = (2H/g) ]/2 according to the following formulas: 

At = 1.33 x 10 -~8 sec if L -  10 -33 cm 

At = 1.33 x 10 -22 see if L - -  10 .3o cm 

At = 1.33 x 10 -6 see if L - -  1 0  -27 c m  

4.2. Change of  Time Scale in Quantum Space-Time 

Consider clocks moving with an arbitrary velocity in a quantum gravita- 
tional field. Then, according to the above result, in a quantum coordinate 
system, the space- t ime interval between counts shown by the clocks is given 
by formula (57), 

I ' ] Oe; dx~ dxm A7= g,m(X) dx"dxm+4iL2O-abg,m(X) Oe~ e" 1/2 
Ox a Ox p 

Since the velocity of  the clocks is dx~/dt, the time interval between counts 
is defined by 

dt [ dx" dx ~ Oe~ Oe'~ d x  "s dxm~ -1/2 
A'r-  L_g~m(x) dt dt ~-4iL2~ Ox ~ Ox p dt ~ ] (94) 

In particular, if  the clocks are at rest, one gets 

g o o ( x ) d t  Oe• Oe~,]-1/2 
-~z = + 4io'~bLZ g, o(X) Ox---- 6 0 x P j  (95) 

As in the usual theory of gravity, in the quantum theory we do not 
observe the coefficients of  change of the time scale appearing in (94) and 
(95) by measuring the time interval dt between two counts and comparing 
it with the averaged value (At), where (. �9 -) means some averaging procedure 
determined below. However,  we can compare the coefficients of  change of  
the time scale due to the quantum nature of  space-t ime at two different 
points of  the field. It is assumed, for example,  that at point 1 we observe 
a light signal coming from point 2, where it appears as a result of  some 
atomic transition. Therefore, according to formula (95), the time between 
two successive signals arriving at point 1 will be connected with the time 
between those leaving f rom point 2 by the formula 

dt2 = (A~')([goo(X2) + f (  xz) ] -1/25 

where 

f (x )  = 4iL2o'~bg, o(X) Oe~ Oe~ 
Ox ~ Ox o 
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If an analogous atomic transition takes place at the point 1, then the time 
separating the arriving light wave signals measured at point 1 is equal to 

dq = (Ar)([goo(Xl) + f(Xx)] -1/2) 

Thus, for the given atomic transition, the ratio of frequencies for (observing 
at point 1) light leaving from point 2 and light coming from point 1 is given 
by 

~', - \L~ + f ( x , )  J 

= L ~ I  ttl+2Lgoo(X2)goo(Xi)JJ/ 
For the limiting case of weak field, g o o ~ - l - 2 ~ b  and I 1<< 1, so that 
v2/vl = 1 + Ap/~,, where 

A ~,/u = [(h (x2) - 4~ (x,)]{1 + �89 -f(x2)])} (96) 

Now it remains to calculate the additional term f ( x )  in (95) caused by 
quantum space-time. In two-dimensional space-time for the simple case 
(5) we have 

o 
o.abg, o ( X ) ~  ~ Oe~ Oe• Oe~ +O'<,bg,o~o Oelb (97) 

OX p --  O'abgo0 0 X  o OX p OX ~ 

The first term is equal to 

aeO~ ae ~ 
[1 = Crabgo0 0 X  0 0 X  o 

ae ~ ae ~ ael ae ~ 
. . . .  + O~logoo 

~176176176 Ox ~ Ox ~ Ox ~ Ox 

ae~ a e  ~ Oe~ a e  ~ 

+ ~ 1 7 6 1 7 6 1 7 6  OX ~ -~X ~  C r ~ 1 7 6 1 7 6  OX ~ a x  

Then, taking into account (5), we get 

c o s  c o s  2 /1 = goo[ O',o(--~)(~)sint~ ~ -f- Cr, o(---~) 

where 

0"10 - -  - -0"0 t  ---- - - T O T 1 / i ,  r~ = to t  --  k X  
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Thus, 

11 = (1 /  i ) y o y l ( w k /  c)goo 

The analogous calculation for (97) gives 

ae~ ae~ 
I~ = o',bglo Ox o ax p 

ae ~ ae~ ee l  Oe~ 
= ~- o-loglo Ox o ~176176 Ox ~ OX ~ OX 

or in explicit form 

{ a e  ~ oel  oe~ Oel~ 
+ ~176176176 ax--d+ax ----6 ax / 

Iz = ~o, g, 0(x) (,o2/c 2) 

Adding the obtained results, one obtains for light signals (k = ~o/c) 

- [ + g10(g) ] W2 'Y0T1 g(~) 1 
11+12= c 2 i ~J 

Thus, in the case of the simple formula (5), the expression (95) takes 
the form 

A_f=[g0o(X)] 1/2 l+4_ffyoy, L 2 1 go--~x)JJ 

or 

d, { 2 [+go x,l  
2~r-[goo(X)]-l/2 1 - 2 - j L Z y o y l  1 goo(x)j j 

Here, one should use some averaging procedure, which reduces to taking 
the expectation value over the vacuum-like state (66) in the quantum 
space-time case, Thus, 

dt = [goo(X)] { 1----C-U L2~ [ (98a) 2 + g lo(X) l l  ' 
<At) ~JJ 

In this particular case, the relation (96) has the form 

A v=u [4,(x2)- 4~(x~)] 1 + c--- T -  L ~  ~ J  (98b) 

From this we see that the contribution to the value of the gravitational red 
shift due to quantum space-time structure is very small (even zero, when 
one takes the trace of ya matrices) of the order L 2 0 ( x ) ,  since we assume 
that Iglo(x)l = Ihm(x)l-  [qS(x)] << 1, where q~(x) is the gravitational potential 
of the body from which light arrives at the observer. 
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Up to now we have not discussed the value of w in (98a), which 
depends on the concrete properties of  the system (atomic transition) that 
emitted the light. Generally speaking, w is connected with the emitting and 
receiving frequencies of  ul and ~'2 at points 1 and 2, respectively. In the 
last case, the ratio (98b) acquires the form 

~--~=. [q~(x2) - ~(x0] l+--p-- -  ~ 

However, there is one interesting experiment testing the gravitational red 
shift, realized by Pound and Rebka (1960). They allowed a photon emitted 
by 57Fe due to an energy transition of 14.4keV (0.1 mks) to fall from a 
height of  22.6 m and observed its resonance absorption by the same atom 
57Fe. For this experimental situation, for the quantity w we choose ~o ~ o)o = 
e /h ,  with e = 14.4 keV. For this 

/( u2 = [goo(X2)] 1/2 1 - 2  e2 ] 

for the light source 57Fe situated at point 2, and ~'1 = [goo(X,)] 1/2 for the 
observation point (target) 1. Then, in this concrete case, we have the ratio 

( 4 )  At,_ [ O ( x 2 ) - O ( x , ) ]  1+2  L 2 (99) 
p s 

In the usual theory of gravity, if the equivalence principle is valid, one must 
expect that the light frequency falling into the target will be shifted by the 
classical value 

( h / ' ~ /  /")el = - - A r  = ~/~ ( X l ) l t a r g e t -  (~ ( / 2 )1  . . . . . .  = 2.46 x 10 - '5 

At present, this theoretical calculation coincides with experimental data 
(Au/u)r215 -15 to an accuracy of about 1% (Pound and Snider, 
1964). Therefore, the quantum correction in (99) should be less than experi- 
mental errors: 

2L2 to~ e 
2.6X10 -Is ~- ~<0.26X10 -16, Wo=~ 

From this we conclude that 

L ~  < 2 • 10 -1~ cm 

Thus, we have shown that the change of time scale due to the quantum 
nature of  space-t ime is quite small. However, there is a more sensitive effect 
of  the structure of space-t ime at small distances, which we now discuss. 
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4.3. Relativity and the Anisotropy of Inertia 

According to the above considerations, the quantum nature of space- 
time at small distances, after averaging over the large scale, plays a role in 
the formation of some anisotropy of the universe and, in turn, gives rise to 
a slight change of the laws of motion in inertial systems of reference. It is 
natural to assume that the appearance of anisotropy is caused by the 
additional force obtained in Section 2. In other words, this force may be 
understood as the source of a small difference in the values of gravitational 
and inertial masses. 

On the level of the usual theory of gravity, in connection with the 
verification of Mach's principle of the possible influence of large mass 
accumulations (for example, in the presence of the Milky Way) on the laws 
of motion, experiments (Hughes et al., 1960; Drever, 1961) devoted to 
testing the existence of a small difference in inertial mass have been carried 
out. Hughes and his team observed resonance absorption of photons by 7Li 
nuclei in a magnetic field. The experimental result is that if one can present 
a nucleus of 7Li as a single proton with angular momentum J = 3 which is 
connected with other nucleons in a central symmetric potential, then the 
anisotropy of  the proton mass 2xm must be equal to 

A ~ - -  ~< 5.3 x 10 -21 MeV (100) 
m 

where pZ/2m is the kinetic energy of the proton. Since p2/2m is larger than 
�89 MeV, this is reduced to the assertion that the anisotropy of inertial mass 
is bounded by 

(Am/m)<~ 10 -2o (101) 

We know that in quantum space-time the kinetic energy of the particle 
is changed in accordance with formulas (12) and (18). This in turn gives 
an additional energy shift (30) for the atomic level in the stationary case. 
We assume that this change of energy level in 7Li is connected with 
anisotropy of the proton mass given by (100) or (101). 

Thus, first we write the change of kinetic energy due to the quantum 
nature of space-time by means of the anisotropy of inertial mass, 

p2 p2 p2 p 2 (  Am) 

~m~m-2(rn_Am)-2rn  l+--~-  

Second, this change is connected with the shift of atomic energy level given 
by (30). For the given case of 7Li (J  = +�89 1 = 1, n = 2, Z = 6), we get 

Am= Z4 (L) 2 m a ~3 hRy (102) 
6(p2/2m) 
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where h c R y  = mee4hc/4.n-h 3 = 13.6 eV, a =0.529 x 10 -8 cm is the Bohr 
radius, and 6 = m p / m  e. On the other hand, the relation (102) is bounded 
by the experimental value (101). Therefore, one can obtain the following 
estimation for the value of the fundamental  length: 

L~< 9.02 x 10 .23 to ~ 1 0  -22 cm 

Thus, we see that the anisotropy property of  inertia is very sensitive 
to the quantum structure of  space-t ime at small distances. Of  course, the 
latter gives rise to the appearance of the slight anisotropy of the universe. 
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